

Green Central Asia

Enhancing environment, climate and water resilience

Towards regular drought status bulletins for irrigation systems in Central Asia using remote sensing

Christopher Conrad

Institute of Geosciences und Geography Department of Geoecolocy

Schafft Wissen. Seit 1502.

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG

Federal Foreign Office

http://greencentralasia.org/en

German Initiative

Aim of 'Green Central Asia':

- to develop a political dialogue and
- consequently create better access to information and data in order
- to enable countries to assess the impact of climate change more accurately and
- to develop cooperative preventive measures.

Target group: foreign ministries and, through them, the respective institutions responsible for climate and environmental resources, including educational and research institutions

Target countries: Kazakhstan, the Kyrgyz Republic, Tajikistan, Turkmenistan and Uzbekistan as well as Afghanistan.

[IDMP] Virtual Exchange - Drought Monitoring and Forecasting

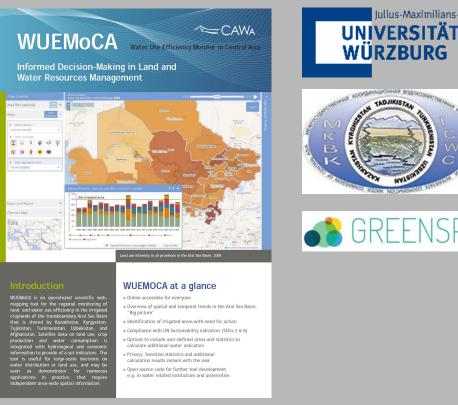
One goal of the Green **Central Asia Initiative** is a **Drought Monitoring System** that helps to detect and manage droughts within a cropping season in the Aral Sea Basin 2020/2021: Specification 2021/2022: Implementation

sia

4

Central

Green



Water Use Efficiency Monitor for Central Asia WUEMoCA

- → German Water Initiative in Central Asia 2009-2019 (<u>https://www.cawa-project.net/</u>)
- → Decision-support tool for identifying irrigated areas of the Aral Sea Basin with need for action in water management (water scarcity, land degradation and abandonment)
- → Source of new data: Integrates satellite RS technology (MODIS), i.e. for land use mapping crop yield estimations and evapotranspiration modelling
- → **Database** for administrative boundaries, water distribution units, regular grid cells and user zones

https://wuemoca.geo.uni-halle.de/app/

https://www.cawa-project.net/newsdetail/news/wuemoca-brochure-broshjura/

Detect parts of the irrigated cropland in the Aral Sea Basin that is unused within one or more cropping years (fallow).

Indicators: Temporarily unused irrigated land, fallow land frequency

⇒ Decisions about the use of unproductive land: planting alternative crops (e.g. agroforestry), abandon land, invest in irrigation and drainage infrastructure, etc.

The figures show the **Amu Darya Delta**. Dark and bright cells in raster refer to mainly unused and heavily irrigated areas, respectively.

Top: Drought year 2008

Down: Water rich year 2010

IARTIN-LUTHER-UNIVERSITÄT

Green Central Asia

Specification phase for a drought monitoring system in the Aral Sea Basin

Who are the users? Scientific / administrative bodies that aim to prepare decision support and political dialogue

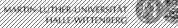
National level: hydromet and other services, universities

Regional I.: CAREC, IFAS

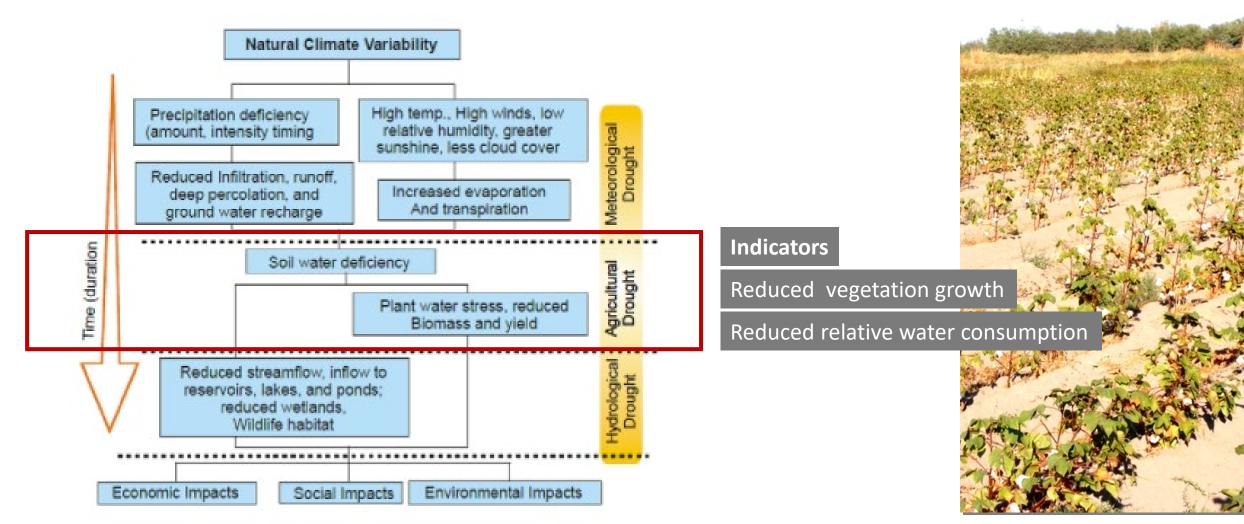
International I.: WMO, GWP, UNCCD, UNDRR, IDMP ...

What are possible recommendations by the users in drought situations?

- Temporarily exclude fields from water supply
- Change water distribution/allocation
- Support of national planning (subsidies)


-

What are the key requirements?


- Detect droughts "in time" (after two weeks)
- 2. Describe droughts: Where, how long, how strong?

Scientific background: drought concept

MARTIN-LUTHER-UNIVERSITÄT

Scientific drought detection and monitoring Indicators from satellite data

Normalized Difference Vegetation Index (NDVI): Index values for greenness and density of vegetation, ratio of red to infrared radiation.

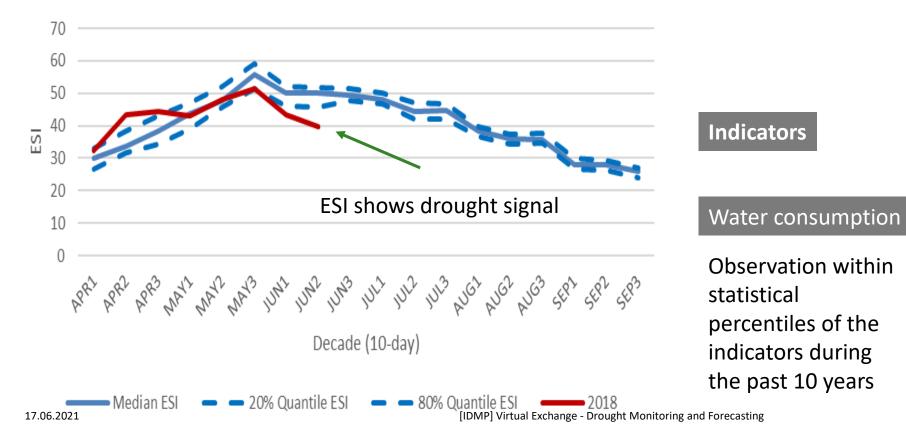
Evaporative Stress Index (ESI): Ratio of actual evapotranspiration (AET) to potential ET (PET), showing water use relative to demand, e.g., S-SEBI model.

Combination of the indicators shows strength and duration of a drought.

Indicators

Reduced vegetation growth

Reduced relative water consumption



MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG

Scientific drought detection and monitoring Indicators from satellite data

ESI Karshi District, Uzbekistan

Ruleset for the analysis of the two indicators (NDVI, ESI, and DSI)

0. DSI [t=k] = WL-ESI [t=k] + WL-NDVI [t=k]

Indikator	APR1	APR2	APR3	MAY1	MAY2	MAY3	JUN1	JUN2	 Classification of Water surplus If WL_ESI >=1 Water surplus = 1 	
WL_ESI	0	-1	-1	-1	0	0	0	1		
WL_NDVI	0	0	-1	-1	-1	-1	0	0		
DSI	0	-1	-2	-2	-1	-1	0	0		
Duration	0	1	2	3	4	5	0	0	Water surplus	
Sum(DSI)	0	-1	-3	-5	-6	-7	0	0	No drought	
Severity	0	<1	=1	>1	=1	<1	0	0	Initial mild drought	Initial severe drought
Surplus	0	0	0	0	0	0	0	1	Mid-term mild drought	Mid-term severe drought
Class									Long mild drought	Long severe drought

2. Classification of drought duration Duration: of drought situation in 10day intervals If DSI >= 0 => duration = 0, if DSI < 0 duration++ if duration < 1 => "no drought" = > "initial drought" if 1<= duration <=2 if 2<= duration <= 3

if duration > 3

- = > "mid-term drought"
- => "long-term drought"

- **3.** Classification of severity
- **Severity** requires DSI < 0 and
- a) Severity Factor: 1.5 & b) Sum(DSI): Sum of DSI from start of drought

If Duration = 0 then Severity = "no drought" Severity = |Sum(DSI)|/Duration*Severity Factor If Severity < 1 => "mild drought" If Severity >=1 => "severe drought"

eXample Monitoring Sponsored by MARTIN-LUTHER-UNIVERSITY Spensored by

Prototype of front end (variant 1):

Developed by informatics students of Uni Halle-Wittenberg

1. Get overview in a 5 k x 5 km raster

1055

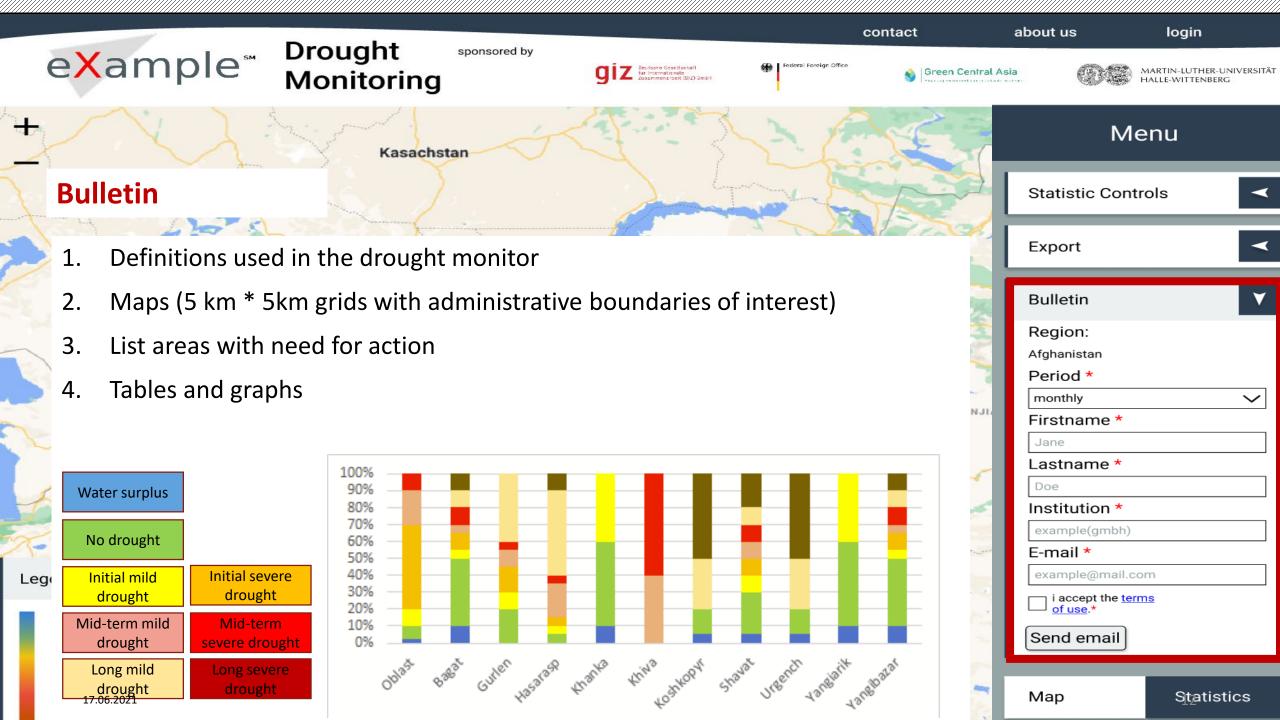
- Analyse drought status and development in administrative boundaries online with a dashboard of information (Map Control => Statistics)
- 3. Analyse own areas of interest (draw polygon, upload shapefile)

Kabul

Radisale

- 4. Export information to shapefile
- 5. Order Bulletin (biweekly, monthly, seasonal)

Afghanistan


Legend

water superplus no drougt mid-term mild drougt long mild drought initial severe drought mid-t@7006:2024 re drought long severe drought

Map of Drought Situation: A combination of indicators and a measuring over time indicates drought duration and severity.

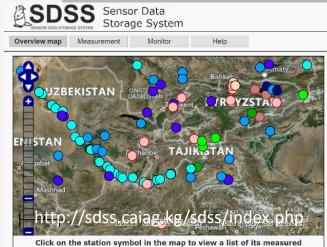
Islamabad_

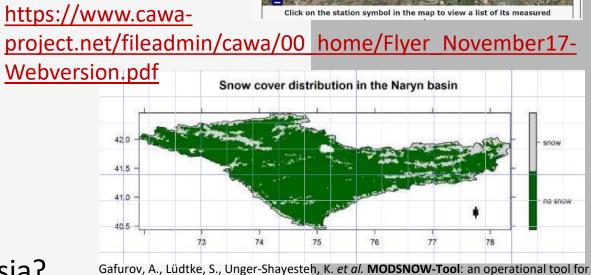
~	≡ Me	nu						
2	Map Control	۲						
	Aggregation level: Country \checkmark Country: Afghanistan \checkmark							
CAN-	Province: District: 	~						
	𝗭 ^{show Grid} Draw Polygon: Upload Shapef	file:						
	Export	<						
	Bulletin	~						
1.61.								
-	Мар	Statistics						

Conclusions

Green Central Asia

- → Scientific tools such as remote sensing technology can contribute to identify, monitor and combat droughts
- → Steps towards a remote sensing based operational drought montoring tool planned in GCA:
 - 1. Specification (in agreement with potential users)
 - 2. Implementation
 - 3. Test and Application (with users)
 - 4. Dissemination (policy dialogue)
- → Identify pathways to implementation and use of such information requires collaboration among all stakeholders




Outlook:

Drought forecast system in the irrigated Aral Sea Basin / Central Asia

Green Central Asia

Gafurov, A., Lüdtke, S., Unger-Shayesteh, K. *et al.* **MODSNOW-Tool**: an operational tool for d Foredaily spow cover monitoring using MODIS data. *Environ Earth Sci* **75,** 1078 (2016). https://doi.org/10.1007/s12665-016-5869-x

- Bring our partners and other stakeholders together: national: hydromets, ministries for emergency situations .. Regional: CAREC, IFAS, ...) international (GWP, WMO, UNCCD, UNDRR, ICBA, ...)
- 2. Define information demand/contribution of hydromets and other stakeholders
- 3. Integrate scientific tools about water availability, artificial reservoirs / management options and water user system (MODSNOW, SDSS, WUEMoCA, GCA drought monitor)
- 4. Present results on **learning platform** for different users

=> Drought Management Center for Central Asia? 17.06.2021 [IDMP] Virtual Exchange - Drought Monitoring and Fo

Green Central Asia

Enhancing environment, climate and water resilience

THANK YOU FOR YOUR ATTENTION

Representation of the University of Halle-Wittenberg in Almaty, Dr. Peter Liebelt (peter.liebelt@geo.uni-halle.de) Towards regular drought status bulletins for irrigation systems in Central Asia using remote sensing

Christopher Conrad

Institute of Geosciences und Geography Department of Geoecolocy

Schafft Wissen. Seit 1502.

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG

